By SIMSON L. GARFINKEL

AF'F: A New Format for

ost forensic practi-
tioners work with
just one or a few
disks at a time. A
wife might bring in
her husband’s lap-
top for imaging a
few days before she
files for divorce. Police might raid a drug
dealer’s apartment and seize a PC that’s used
for contacting suppliers. In these cases it is
common practice to copy the drive’s con-
tents sector-for-sector into a single file,
referred to here as raw copy. Some practi-
tioners bypass the file entirely, and just make
a raw copy to a second disk drive that is the
same size (or larger) than the original.

Raw images are widely used because they
work with practically every disk forensics tool
available today. But raw images are not com-
pressed, and can be quite large, even if the
drive itself contains very little data.

The obvious way to solve the data storage
problem is with a file compressor such as gzip
or bzip2. But neither supports random access
within a compressed file. Because a forensic
tool requires random access in the same man-
ner that a file system requires random access
to a physical disk, disk images compressed
with a file compressor must be decompressed
before they can be used.

A second problem with raw images is the
recording of metadata. Because a raw image is
a sector-for-sector copy of a target drive, there
is no place to store additional information in
the file. As a result, information such as the ser-
ial number of the target drive, the name of the
investigator who performed the acquisition,
and even the date the disk was imaged must be
stored elsewhere—for example, in a database.
But if metadata is not stored in the image file
itself, there is a chance it will become separated
from the image file and lost, or even confused
with the metadata of another drive.

COMMUNICATIONS OF THE ACM February 2006/Vol. 49, No. 2

STORING HARD DRIVE IMAGES

85

he file format used by the popular

EnCase forensic tool overcomes

many of the problems inherent
with raw images. EnCase stores a disk image as a
series of unique compressed pages. Each page can be
individually retrieved and decompressed in the com-
puter’s memory as needed, allowing random access to
the contents of the image file. The EnCase format
also has the ability to store metadata such as a case
number and an investigator. Unfortunately, the
EnCase format is proprietary; although a few vendors
have tried to reverse engineer the format to provide
for some compatibility, such support is necessarily
incomplete.

Faced with this situation, we designed a new file
format for our forensic work. Called the Advanced
Forensics Format (AFF), this format is both open and
extensible. Like the EnCase format, AFF stores the
imaged disk as a series of pages or segments, allowing
the image to be compressed for significant savings.
Unlike EnCase, AFF allows metadata to be stored
either inside the image file or in a separate, compan-
ion file. Although AFF was specifically designed for
use in projects involving hundreds or thousands of
disk images, it works equally well for practitioners
who work with just one or two images. And in the
event the disk image is corrupted, AFF internal con-
sistency checks are designed to allow the recovery of
as much image data as possible.

The AFF format is unencumbered by any patents
or trade secrets, and the open source implementation
is distributed under a license that allows the code to
be freely integrated into either open source or propri-
ety programs. We hope that AFF will be adopted by
other tool vendors and become a standard format for
storing disk images.

AN OPEN, EXTENSIBLE FORMAT
In order to create a format that will allow for both
forward and backward compatibility over an
extended time, AFF is partitioned into two layers.
AFF’s lower data storage layer describes how a series
of name/value pairs are stored in one or more disk
files in a manner that is both operating system and
byte-order independent. AFF’s upper disk represen-
tation layer defines a series of name/value pairs used
for storing disk images and associated metadata.
The original plan for AFF’s lower layer was to use
an open source b-tree implementation such as Berke-

ley DB (BDB), the GNU Database Manager

86 February 2006/Vol. 49, No.2 COMMUNICATIONS OF THE ACM

(GDBM), or a similar system. But BDB and GDBM
are distributed under the GNU Public License, which
is unacceptable to most commercial software devel-
opers. (A licensed version of BDB with fewer restric-
tions can be obtained from SleepyCat software, but
not for free.) The Apache SDBM database has no
such restrictions, but it creates sparse files that cannot
be efficiently copied between machines. Another con-
cern was the layout of information in a b-tree file
might be too complex to explain in court, should the
need arise.

Instead, we designed a new, simple system based
on a repeatable, variable-length structure called an
“AFF segment.” Each AFF segment consists of a
header, a variable-length segment name, a 32-bit flag,
a variable-length data payload area, and a segment
footer. The segment’s length is stored in both the
header and footer, allowing for rapid seeking through
a file (only the headers and the footers must be read.)
The AFF file begins with a file header and ends with
a directory that lists all of the segments in the file and
their byte offsets from the file’s start. If no directory is
present, one can be readily constructed by scanning
the file from beginning to end, a process that typically
takes just a few seconds.

AFF’s disk representation layer defines specific seg-
ment names used for representing disk information
and metadata. For example, “device_sn” is the name of
the segment used to hold the disk’s serial number, while
“date_acquired” holds the time the disk image was
acquired. Two special segments are “accession_gid,”
which holds a 128-bit globally unique identifier that is
different each time the disk imaging program is run,
and “badflag,” which holds a 512B block of data that
identifies blocks that cannot be read in the disk image.
The metadata can be stored in the same AFF file as the
image or in a separate file. Indeed, the schema could
even be stored in an XML file.

Tagging bad blocks with a specific pattern is supe-
rior to the more common technique of filling bad
blocks with ASCII NUL characters because it allows
sectors that are unreadable to be distinguished from
those that have been manually cleared. On the other
hand, we thought the complexity of having a separate
map of bad blocks was not warranted.

The image data itself is split into one or more data
segments. All data segments must be the same size;
this size is determined when the image file is created.
Segments are given sequential names—for example
seg0, segl, seg2—and continuing to segn, where 7 is as
large as is necessary to store the disk image. The seg-
ment size is stored in a segment called “segsize.”

AFF data segments can be compressed with the
open source zlib or left uncompressed; whether or not

a data segment is compressed or is encoded in the data
segment’s 32-bit flag. Compressed AFF files consume
less space, but are slower to create and slower to access.
The decision to compress or not to compress can be
made at runtime, and uncompressed AFF files can
easily be compressed or vice versa.

AFFLIB AND AFF TooLs

AFFLIB is the open source library that implements
the underlying AFF system. Rather than forcing the
programmer to understand segments, data segments,
compression and so on, AFFLIB implements a sim-
ple abstraction that makes the AFF image file appear
as a persistent name/value database and as a standard
file that can be opened, read, and seecked with the
af_open(), af_read() and af seek() library calls. (In fact,
the AFFLIB also supports an af write() call to make it
easier to write disk-imaging programs.) If af” open() is
used to open a non-AFF file, the library defaults to a
pass-through mode of operation, allowing AFF-aware
programs to work equally well with raw files.

The AFF source code comes with a set of tools
including a disk-imaging program (aimage), a pro-
gram for converting AFF metadata into XML
(afxml), a program for converting raw images to AFF
images and back (afconvert).

We have also modified Brian Carrier’s open source
Sleuth Kit to work with AFF-formatted files. The
modifications are relatively minor and are likely to be
incorporated into the Sleuth Kit’s public release.
When run interactively, no performance degradation
is noticeable—not even on compressed AFF files.

We have been able to store more than one terabyte
of disk images in less than 200GB using AFE We are
now working to improve the AFF Tools and the per-
formance of AFFLIB. More information about AFE
including the source code, can be found at

www.afflib.org. @

SIMSON L. GARFINKEL (simsong@acm.org) is a fellow at the
Center for Research on Computation and Society at Harvard
University, Cambridge, MA. He is also a founder of Sandstorm
Enterprises, a computer security firm that develops advanced computer
forensic tools used by businesses and governments to audit their
systems.

Permission to make digital or hard copies of all or part of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

© 2006 ACM 0001-0782/06/0200 $5.00

T HE AFF FORMAT Is
UNENCUMBERED BY ANY PATENTS OR
TRADE SECRETS, AND THE OPEN
SOURCE IMPLEMENTATION IS
DISTRIBUTED UNDER A LICENSE THAT
ALLOWS THE CODE TO BE FREELY
INTEGRATED INTO EITHER OPEN SOURCE
OR PROPRIETY PROGRAMS. WE HOPE
THAT AFF WILL BE ADOPTED BY
OTHER TOOL VENDORS AND BECOME A
STANDARD FORMAT FOR STORING
DISK IMAGES.

COMMUNICATIONS OF THE ACM February 2006/Vol. 49, No. 2

87

